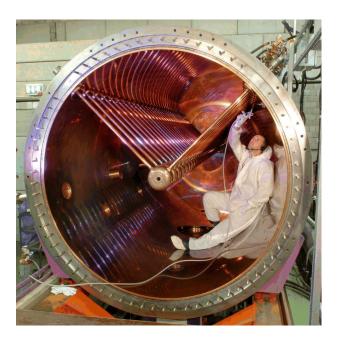

4.110 darmstadtium

Stable	Relative	Mole		
isotope	atomic mass	fraction		
(none)				


Half-life of radioactive isotope

Less than 1 hour

267 _{Ds}	²⁶⁹ Ds	²⁷⁰ Ds	271 _{Ds}	²⁷³ Ds	277 _{Ds}	²⁷⁹ Ds	²⁸⁰ Ds	²⁸¹ Ds	²⁸² Ds

Darmstadtium does not occur naturally in the Earth's crust. Darmstadtium was first synthesized by an international team of scientists from the GSI in Darmstadt, Germany, Joint Institute for Nuclear Research (JINR) in Dubna, Russia, the Comenius University in Bratislava, Slovakia and the University of Jyväskylä, Finland at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt (Figure 4.110.1), Germany in 1994 using the nuclear reaction ²⁰⁸Pb (⁶²Ni, n) ²⁶⁹Ds. The **element** was named darmstadtium after the place where the first synthesis was made [653-656]. Darmstadtium has no known isotopic applications aside from scientific research.

IUPAC

Fig. 4.110.1: View inside of the UNILAC (Universal Linear Accelerator) used to create darmstadtium at GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. (Photo Source: G. Otto, GSI Helmholtzzentrum für Schwerionenforschung GmbH)[651].