4.52 tellurium

Stable	Relative atomic mass	Mole fraction
¹²⁰ Te	119.904 06	0.0009
¹²² Te	121.903 04	0.0255
¹²³ Te	122.904 27	0.0089
¹²⁴ Te	123.902 82	0.0474
¹²⁵ Te	124.904 43	0.0707
¹²⁶ Te	125.903 31	0.1884
$^{128}{ m Te}^{\dagger}$	127.904 461	0.3174
130 Te [†]	129.906 222 75	0.3408

[†] **Radioactive isotope** having a relatively long half-life and a characteristic terrestrial isotopic composition that contributes significantly and reproducibly to the determination of the standard atomic weight of the element in normal materials. The half-lives of ¹²⁸Te and ¹³⁰Te are 2.5×10^{24} and 7×10^{20} years, respectively.

4.52.1 Tellurium isotopes in Earth/planetary science

4 Tellurium isotopes are a mixture of r-process, s-process, and p-process nucleosynthesis

5 products, making them useful for studying the contribution of stellar products to the molecular

6 cloud from which the Sun and planets were formed (Figure 4.52.1) [375-377].

7

1 2

3

8 9

Fig. 4.52.1: Variation in isotope-amount ratio $n(^{130}\text{Te})/n(^{128}\text{Te})$ of tellurium in selected 10 meteorites and terrestrial materials (modified from [377], assuming a measured isotope-amount 11 ratio $n(^{130}\text{Te})/n(^{128}\text{Te})$ of 1.066 65 [378]. Based on these data, Fehr et al. [377] conclude that the 12 regions of the solar disk that were sampled during accretion of meteorite parent bodies were well 13 14 mixed and homogeneous on a large scale, with respect to tellurium isotopes. 15

- 16 17
- 18

4.52.2 Tellurium isotopes in geochronology

The **double beta decav** of ¹³⁰Te has been used for the determination of gas-retention ages of 19 tellurium minerals [379]. 20 21

22 4.52.3 Tellurium isotopes used as a source of radioactive isotope(s) 23

¹²⁰Te is used for the production of ^{120g}I, where "g" indicates ground state, via the ¹²⁰Te (p, n) ^{120g}I 24 reaction, which is used as a **positron emission tomography** (**PET**) and beta-emitting isotope 25

IUPAC

- [380, 381]. ^{120g}I has a half-life of 1.36 hours. ¹²²Te is used in the production of the **radioisotope** ¹²²I (with a half-life of 3.6 minutes) via the reaction ¹²²Te (p, n) ¹²²I, which is used in gamma imaging [382]. ¹²³Te is used for the production of radioactive ¹²³I (with a half-life of 0.55 day) via the ¹²³Te (p, n) ¹²³I reaction, which is used in thyroid imaging [383] and for *in vivo* medical studies using **single-photon emission computed tomography** (SPECT) [383]. ¹²⁴Te is used for the production of both ¹²³I and the PET isotope ¹²⁴I via the ¹²⁴Te (p, 2n) ¹²³I and ¹²⁴Te (p, n) ¹²⁴I reactions, respectively [383-386]. The half-life of ¹²⁴I is 100 hours.